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Abstract— Effective utilization of the changing precipitation
microphysics in real-time radar quantitative precipitation estima-
tion (QPE) is challenging, which requires dynamic adjustment
of the radar reflectivity (Z) and rain rate (R) relations. This
article develops and demonstrates two dynamic radar rainfall
approaches using 16 Doppler weather radars and 4579 surface
rain gauges deployed over the Eastern Jiang Huai River Basin
(EJRB) in China. Both approaches are derived based on the
radar-gauge feedback mechanism. Although the Z–R relations in
both approaches are dynamically adjusted within a precipitation
system, one is using a single global optimum (SGO) Z–R relation,
while the other is using different Z–R relations for different
storm cells identified by a storm cell identification and tracking
(SCIT) algorithm. Four precipitation events featured by different
rainfall characteristics are investigated to evaluate the perfor-
mances of various QPE methodologies. In addition, the short-
term vertical profile of reflectivity (VPR) clusters is extensively
analyzed to resolve the storm-scale characteristics of different
storm cells. The evaluation results based on independent gauge
observations show that both rainfall approaches with dynamic
Z–R relations perform much better than the fixed Z–R relations.
The adaptive approach incorporating the SCIT algorithm and
real-time gauge measurements has the best performance since
it can better capture the spatial variability and evolution of
precipitation.

Index Terms— Dynamic approach, quantitative precipitation
estimation (QPE), storm cell identification and tracking (SCIT),
weather radar.

I. INTRODUCTION

RADAR-BASED quantitative precipitation estimation
(QPE) at high spatiotemporal resolution is critical for

severe weather warning and urban flash flood forecast [1], [2].
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Although many operational weather radars such as the United
States Weather Surveillance Radar-1988 Doppler (WSR-88D)
systems have been upgraded with dual-polarization capability,
single-polarized radars still form the cornerstones of national
weather forecasting infrastructure in many countries. As such,
there is a continuing interest in the radar reflectivity-based
rainfall estimation methodologies.

In general, the climatology-based radar QPE algorithm is
utilized, which attempts to obtain the optimal radar reflectivity
(Z ) and rain rate (R) relationships based on long-term radar
reflectivity and surface gauge and/or disdrometer measure-
ments [3]. In addition, it is commonly recognized that a
single Z–R relation is not sufficient to represent local rainfall
microphysics in different precipitation events, even in different
rainfall regimes within a single storm system. Significant
progress has been achieved to address radar QPE over recent
years. For example, the WSR-88D radars adopt different
Z–R relations for different rainfall types [4]. In particular,
Z = 200R1.6, Z = 300R1.4 and Z = 230R1.53 are respectively
applied for stratiform, convective, and tropical rain. Similarly,
the multiradar multisensor (MRMS) system calculates the
surface precipitation rate using multiple Z–R relations for
different precipitation types, namely, warm and cold strati-
form rain, convective rain and hail, and snow [5]. However,
the nonuniformly distributed precipitation at different regimes
is still difficult to be characterized, especially in mountainous
terrain where orographic enhancement, partial beam blockage
(PBB), and bright band (BB) contamination are prevalent
[6]–[9]. Even if the radar data is not affected by system
calibration, ground clutter, and/or PBB, appropriate processing
is required to create regular reflectivity grids that can capture
the evolution of precipitation. In addition, dynamic Z–R
relationships are necessary to differentiate the spatiotemporal
variability of precipitation for QPE applications [10]–[12].

Alfieri et al. [13] proposed a single globally optimal (SGO)
approach for producing accurate radar-based rainfall estimates
by adjusting the coefficients in the Z–R relations continu-
ously in time. Although this SGO-based approach showed
reasonable performance for the 19 rainfall events presented in
their article, the spatial variability of precipitation still cannot
be reflected in their adaptive algorithm. Gou et al. [14], [15]
developed an improved radar rainfall approach based on
reflectivity threshold and the storm cell identification and
tracking (SCIT) algorithm described in [16]. In this improved
method, the storm-scale precipitation microphysics are derived
from the multiradar hybrid mosaic reflectivity (MHMR) field,
and more representative Z–R relationships are applied for
individual rainstorm cells. Preliminary application over the
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eastern Tibetan Plateau showed the great potential of this
dynamic rainfall methodology. In this article, we extend the
study in [15] to a more challenging scenario. The main
goal is to demonstrate the performance of the physically
based dynamic radar rainfall system (hereafter referred to
as the SCIT-based approach since it belongs to the same
category with the method in [15]) during large-scale severe
convective storm events. This article is also motivated by the
fact that more than 60 000 ground weather stations have been
deployed in China, which serve as another important source
for routine weather monitoring and precipitation measurement.
Each station is equipped with a rain gauge. Such a dense
gauge network enables real-time feedback to radar rainfall
algorithms over a large domain. In addition, the most important
synoptic signatures during flood season in China are influenced
by the East Asian Monsoon (or Meiyu front). Large-scale
severe convective precipitation systems, even typhoons, often
occur during the flood seasons, which usually include multiple
precipitation regimes characterized by high spatial variability.

This article is organized as follows. Section II describes
the radar data processing and QPE algorithms; Section III
presents an application study in the Eastern Jiang Huai River
Basin (EJRB) of China; quantitative evaluation of different
radar QPE approaches is detailed in Section IV; Section V
summarizes the main findings of this article.

II. METHODOLOGIES

A. Radar Data Processing

The dynamic radar rainfall estimation mechanism is devised
to work on the MHMR field. Therefore, radar reflectivity data
quality control and mosaicking should be conducted prior to
the implementation of adaptive radar rainfall relations. Here,
three data preprocessing steps are highlighted to ensure reli-
able radar QPE in the application study detailed in Sections III
and IV.

1) Ground Clutter Filtering and Clear Air Echo Identi-
fication: It is well known that ground clutters, which
are typically featured with static positions, are often
embedded in the precipitation observations. The fuzzy
logic approach described by Berenguer et al. [17] is
implemented in this article in order to eliminate the
clutters and associated anomalous propagation effects.
In addition, this article incorporates the vertical gradient
of reflectivity, the standard deviation of radial velocity,
as well as the radar echo top (i.e., reflectivity threshold
of 20 dBZ) to discriminate clear air echoes.

2) Beam Obstruction Consideration: The PBB ratio of each
radar’s radial profile is calculated and the sampling
volumes are removed if the PBB ratio is higher than
50%. The reflectivity profiles are corrected if the PBB
ratio is small, based on the approaches in [4] and [18].

3) Constructing the MHMR Field: With the temporally
matched reflectivity data from individual radars, the
MHMR field can be constructed. In this article, the near-
est neighbor approach is utilized to map the multiradar
observations on regular Cartesian grids at a horizontal
resolution of 0.005◦ × 0.005◦ latitude/longitude coordi-
nates.

B. Dynamic Radar Rainfall Algorithm

Fig. 1 shows the system diagram of the SGO- and SCIT-
based radar QPE algorithms. Both methods utilize the radar
estimate and gauge measurement pairs [Ri , Gi ] to provide
feedback information to the selection of Z–R relations. Here,
it should be noted that Ri and Gi represent the radar-derived
6-min (volume scan time) rainfall amount and corresponding
gauge measurement, respectively. Ri is derived by averaging
two temporally adjacent radar rainfall estimates from the
MHMR field. The parameters A and b in Z = ARb are
dynamically fit every 6 min through the optimization equation
defined as

δ = min
n∑

i=1

[
(Gi − Ri )

2 + |Gi − Ri |
]

(1)

where i denotes the gauge index; n is the total number of
valid gauges used in the optimization process. Equation (1) is
a quadratic function, and the first term on the right-hand side
will increase quickly and dominate if the difference between
Gi and Ri is higher than 1 mm. Otherwise, the second term
will contribute more to the difference. After obtaining the
optimal Z–R relation at each time frame with the standard
weighted least squares method, hourly rainfall accumulations
are derived for each grid pixel using the 6-min estimates.
As shown in Fig. 1, both the SGO- and SCIT-based algorithms
rely on the gauge-radar pairs. Ensuring the gauge data quality
is critical to the derivation of optimal Z–R relations. In real-
time operational applications, the gauge data quality control
process described in Fig. 1 is adopted to disregard suspicious
records.

The main difference between the SGO- and SCIT-based
approaches is that the SGO-based algorithm only derives one
global Z–R relation using all the radar-gauge pairs. The local
variability in the spatial distribution of precipitation is not
taken into account. Instead, the SCIT-based approach incor-
porates a reflectivity partitioning process to better capture the
precipitation variability within a storm system. In particular,
a reflectivity threshold of 20 dBZ is applied to the MHMR
field first. The relation of Z = 200R1.6 is used by default if
the radar reflectivity is less than 20 dBZ. In the regions where
the reflectivity is higher than 20 dBZ, a 5-dBZ step is applied
to further refine the reflectivity field into different areas.
As a result, the precipitation system is dynamically classified
as multiple storm cells. The optimization process in (1) is
implemented for each identified cell to derive appropriate Z–R
relationships. For comparison purposes, the convective rainfall
relation Z = 300R1.4, the Marshall–Palmer relationship Z =
200R1.6, as well as the tropical rainfall relation Z = 230R1.25

are also implemented for the same radar reflectivity field. Five
hourly rainfall estimates derived from the same radar data
set are verified and evaluated using independent rain gauge
observations.

In addition, the vertical profile of reflectivity (VPR) of each
storm cell is derived based on the 3-D multiradar reflectivity
mosaic field. The reflectivity mosaic is constructed from
temporally matched single radar reflectivity grids using the
nearest neighbor approach [5]. The averaged reflectivity at
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Fig. 1. Flowchart for rain gauge data quality control, and the SGO- and SCIT-based rainfall approaches.

each vertical level of the storm cell can be expressed as

Z k(Zt) = 1

N(S)

∑
(i, j)∈S

Z(i, j, k) (2)

where Z(i, j, k) is the reflectivity at Cartesian coordinate (i, j)
at the kth level of the multiradar 3-D reflectivity mosaic
product; S is the area of storm cell bottom on the MHMR field
identified by the SCIT algorithm using reflectivity threshold
of Zt ; N(S) is the number of grid pixels within the area S.

The storm core can be gradually distinguished from its
surrounding area by increasing Zt . The storm cell VPR infor-
mation across the rainstorm lifespan or during the predefined
time windows can be successively obtained and the VPR time
series can be assembled as clusters which serve as an impor-
tant indicator of the temporal variations of the precipitation
microphysics. The different characteristics of VPR clusters for
different storm cells also highlight the need for dynamic radar

rainfall relations that can represent the changing precipitation
microphysics.

III. APPLICATION IN THE EJRB OF CHINA

A. Study Domain

In order to demonstrate the performance of various radar
rainfall algorithms, this article selects the EJRB in China as
the study domain. Fig. 2 illustrates the digital elevation model
(DEM) information of China and the EJRB area in particu-
lar. The EJRB area (116◦E–123◦E, 30.5◦N–35.25◦N) covers
Jiangsu province, Shanghai city, southern part of Shandong
province, eastern part of Anhui province and northern part of
Zhejiang province, containing the major part of the Yangtze
River Delta which is the largest urban region supporting the
most prosperous economy in China.

Although there are many small hills, the altitude of most
parts of this region is below 50 m above the mean sea level.
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Fig. 2. DEM information of (a) China and (b) EJRB area [indicated by the black rectangle in (a)].

TABLE I

FOUR TYPICAL WEATHER EVENTS OVER THE EJRB AREA

This area is primarily featured by the subtropical monsoon
(Meiyu monsoon) climate. The synoptic signatures during
summer storm seasons in this region are characterized by a
warm and wet environment with abundant vapors aggregating
in the atmospheric layers below 850 hPa, which provides good
moisture conditions for the formation of severe convective
rainfall. In addition to bringing abundant water resources to the
distributed freshwater lakes and rivers, the disastrous weather
events such as extreme precipitation often create substantial
negative impacts on regional economics. Therefore, accurate
QPE is critical to inform the decision process for water
managers that are balancing the competing needs for water
supply and flood mitigation.

B. Radar and Gauge Network

Sixteen S-band Doppler weather radars over the EJRB
area are used in this article. Fig. 3(a) shows the locations
and coverage information of these radars. The height of the
MHMR field used for radar QPE applications is also depicted
in Fig. 3(a). Most of the regions have low-level coverage
(<1 km), indicating the great potential of using this radar
network to observe severe weather phenomena close to the
surface. All the 16 radars are operational systems deployed
for providing severe weather warning and nowcast services
for the EJRB region. The radial and azimuthal resolutions
are configured as 1000 m and 0.98◦, respectively. For routine
meteorological operations, the scan strategy for each radar
is configured as standard volume coverage pattern (VCP)
including 11 scanning elevation angles: 0.5◦, 1.5◦, 2.4◦, 3.5◦,
4.9◦, 5.6◦, 6.5◦, 7.9◦, 9.5◦, 14.5◦, and 19.5◦. A volume scan in

this VCP mode can be completed in approximately 6 min. The
radar base-level data packets are enveloped and streamed to the
data processing server every 6 min for further data processing
and product generation.

Fig. 3(b) shows the rain gauge locations in the EJRB area.
In total, there are 4579 rain gauges operationally deployed
in this particular domain. Such a dense rain gauge network
can effectively be utilized to capture the overall precipita-
tion pattern and intensities in this region. In this article,
2289 gauge stations are used to derive the dynamic radar
rainfall algorithms described in Section II, whereas 2290 sta-
tions are used to evaluate various radar rainfall algorithms.
Most of these stations are tipping-bucket gauges configured
with 1-min temporal resolution in order to provide a fine-scale
measurement of rainfall time series, and only time series with
no interruption report are used. The SGO- and SCIT-based
radar QPE algorithms are evaluated using gauge data at an
hourly scale to avoid the measurement errors of rain gauges,
especially during light rain [19].

In addition, a simple quality control process (see Fig. 1)
is imposed on the gauge data. If the hourly rainfall record
from gauge is less than 0.1 mm but the corresponding radar
estimate is greater than 5 mm, the gauge data are deemed as
false recording and the gauge is suspected to be jammed by
tree leaves or insects. Otherwise, if the gauge rainfall record is
greater than 5 mm but the radar estimate is less than 0.1 mm,
the gauge data are also considered false reading. Furthermore,
the potential maximum (Rmax) and minimum (Rmin) hourly
rainfall measurements from gauges are estimated using radar
reflectivity aloft based on two empirical Z–R relationships:
Z = 640R1.6 and Z = 200R1.6. The gauges whose hourly
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Fig. 3. Radar and gauge network over the EJRB area. (a) 150-km coverage ranges (black circles) of each radar site and height of the MHMR field. (b) Rain
gauges are uniformly portioned into training (2289 sites in blue) and testing (2290 sites in red) data sets.

rainfall measurements fall outside of [Rmin − 5, Rmax + 5] are
also eliminated from the raw data.

C. Precipitation Events

Four typical precipitation events over the EJRB area are
selected to demonstrate the proposed rainfall estimation sys-
tem. Table I describes the overall time spans and synoptic
signatures of these four events. Fig. 4 shows sample reflectivity
observations during these four events. In particular, nine storm
cells (indicated by the circles in Fig. 4) are identified from the
MHMR fields. Although the reflectivity structures of these
nine cells show some similarity, the detailed precipitation
characteristics are different from each other. Fig. 5 shows the
vertical cross sections of these storm cores, and the location
information of the cross section lines is detailed in Table II.
Fig. 6 illustrates the VPR clusters of these nine identified cells
to resolve the transition of rainfall states during their lifecycles.
Table III lists the numbers of VPR profiles associated with
each storm cell as well as their starting and ending time. The
Z–R relations derived for the individual storm cells are also
presented in Table III. The vertical cross sections and VPR
clusters of these storm cells are useful to reveal the spatial
differences and temporal evolution of the whole rainstorm
system.

1) Event 1: Event 1 was mainly caused by the peripheral
rainfall system of typhoon Soudelor, which was gradually
weakening after its landfall in Fujian province of China
around 20:40 UTC, August 8, 2015. After Soudelor moved
to Anhui province, it receded as a low-pressure circula-
tion at 09:00 UTC, August 10, 2015. Then, this circula-
tion transformed into a temperate cyclone and moved into
Jiangsu province, and then to the Yellow Sea near Yancheng
City, Jiangsu. During typhoon Soudelor, the maximum gauge
6-h rainfall measurement reached 262 mm at 10:00 UTC,
August 10, 2015, which occurred at Chengou village near the
entrance of Hongze Lake.

Massive rainstorms were accompanied during typhoon
Soudelor. Storm cells 1 and 2 in Fig. 4(a) were identified

TABLE II

CROSS SECTION LINE INFORMATION OF THE STORM CELLS IN FIGS. 4
AND 5. THE STARTING AND ENDING POINTS ARE INDICATED BY

(LONGITUDE, LATITUDE)

using the reflectivity threshold of 35 and 40 dBZ, respectively,
at 05:00 UTC, August 10, 2015. Cell 2 (inner circle) was
essentially the storm core area of cell 1 (outer circle), and the
cell 2 quickly dissipated with the typhoon gradual weakening.
After 4 h, the widespread rainstorm transformed into a stage
as shown in Fig. 4(b) and only storm cell 1 was identified at
09:00 UTC, August 10, 2015.

The storm-scale VPR clusters in Fig. 6(a) and (b) both
presented obvious tropical rainfall characteristics with radar
reflectivity monotonically increasing toward the surface, indi-
cating that higher vapor concentration dominated at the bottom
of these two storm cells. In addition, the vertical gradient of
the VPR clusters of cell 2 [see Fig. 6(b)] was larger than
cell 1 [see Fig. 6(a)], which implies that the rainfall rate
in the rainstorm center area was higher than its surrounding
areas. During this time period, both of these two storm cells
were at the weakening stage, especially cell 2: the reflectivity
values of cell 2 were decreasing from the green curve (starting
state) to the red curve (ending state), indicating that cell 2
quickly dissipated in this process. Consequently, the spatial
structure of the whole rainstorm in Fig. 4(b) and the cross
section in Fig. 5(b) show that pixels with reflectivity higher
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Fig. 4. Storm cell identification results from the MHMR field at (a) 05:00 and (b) 09:00 UTC, August 10, 2015; (c) 22:30 UTC, June 21, 2016, and (d)
00:00 UTC, June 22, 2016; (e) 05:00 and (f) 06:30 UTC, June 23, 2016; (g) 1230 and (h) 19:00 UTC, July 09, 2017. The circles represent the locations of
nine identified storm cells and the lines indicate the locations of cross sections illustrated in Fig. 5.

than 45 dBZ were less than that in Fig. 5(a). Although storm
cell 1 was apparently enhanced when the green VPR curve
transformed into the red curve in Fig. 6(a), such enhancement
was essentially caused by the hydrometer diffusion of cell 2.

2) Event 2: Event 2 was tightly associated with the interac-
tion of the cold air from the north and warm air from the south,
which triggered a nearly horizontal convergence line along
the latitude of 32◦N. The severe rainfall system featured with
typical shapes as depicted in Fig. 4(c) was formed during this
process. The maximum 6-h rainfall measurements at Ligang

station reached 148.5 mm at 08:00 UTC, June 22, 2016. Storm
cells 3 and 4 are successively identified using the reflectivity
threshold of 35 dBZ. With the cold air continuously moving
to the south, cell 3 was mainly embedded and sustained in the
south part of this rainstorm, whereas cell 4 was detected later
at the north side of this rainstorm [see Fig. 4(d)].

Cell 3 was a severe convective rainstorm featured by abun-
dant hydrometers below the altitude of 6 km. The spatial
structure illustrated in Fig. 4(c) and (d), and the vertical cross
sections in Fig. 5(c) and (d) all showed that most reflectivity
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Fig. 5. Cross sections for the eight lines illustrated in Fig. 4. (a) and (b) Cells 1 and 2 in Fig. 4(a) and (b), respectively. (c) and (d) Cells 3 and 4 in Fig. 4(c)
and (d), respectively. (e) and (f) Cells 5–7 in Fig. 4(e) and (f), respectively. (g) and (f) Cells 8 and 9 in Fig. 4(g) and (h), respectively. The longitudes and
latitudes (◦) of the starting and ending points of these storm cells are marked on the x-axes with their vertical columns marked by the dashed-rectangles.

pixels of cell 3 were larger than 45 dBZ. This also made
its VPR cluster [see Fig. 6(c)] featured by a small vertical
gradient during its lifespan. In addition, the storm cell 3 had
gone through a complex growing and dissipating process,
in which its VPR cluster first transformed from the green
curve (starting state) at 22:00 UTC, June 21, 2016, to the

blue curve (strongest state) at 23:00 UTC, June 21, 2016, and
then gradually weakened into the red curve (ending state) at
00:36 UTC, June 22, 2016, which was similar to the starting
state.

The rainfall characteristics of cell 4 were very different
from cell 3. Although its reflectivity structure was much
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Fig. 6. Storm-scale VPR clusters of the nine storm cells detailed in Table III. The green and red curves represent their starting and ending states. The blue
curves in (c) and (e) respectively represent the strongest state of cells 3 and 5. (a) Cell-1. (b) Cell-2. (c) Cell-3. (d) Cell-4. (e) Cell-5. (f) Cell-6. (g) Cell-7.
(h) Cell-8. (i) Cell-9.

TABLE III

TIMESPANS OF THE STORM-SCALE VPR CLUSTERS IN FIG. 6 AND CORRESPONDING Z –R RELATIONSHIPS
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weaker than cell 3, it was featured by the enhanced reflectivity
caused by the melting layers near the altitude of 5 km [see
Fig. 6(d)]. Nevertheless, the vertical structure of reflectivity
was different from the typical VPR curve of stratiform rain in
the cold seasons which was monotonically decreasing toward
the surface below the melting layer. The warm and wet
environments at the bottom of storm cell 4 hindered its VPR
from continuously decreasing toward the surface. As a result,
warm stratiform rain predominated in cell 4, which was prone
to heavier rainfall than the stratiform rain in cold seasons.

3) Event 3: Event 3 was initially triggered by the northeast
low-level jet stream and the southwest high-level jet stream.
Both severe tornado and hails were reported in the Funing
town of Yancheng City at 06:30 UTC, June 23, 2016. Then a
squall line with severe convective rainstorms moved quickly
from the northwest to the southeast over the EJRB area. The
maximum 6-h rainfall measurement during this event reached
148.8 mm at Lanling station at 10:00 UTC, June 23, 2016.
Severe convective cells 5–7, illustrated in Fig. 4(e) and (f),
were successively identified based on the reflectivity threshold
of 40 dBZ. In addition, the reflectivity values within the core
areas of these cells were higher than 55 dBZ. The VPR clusters
of these three storm cells were illustrated in Fig. 6(e)–(g).

Cell 5 was associated with a developing tornado, and short-
time hailfall was also reported afterward. The small change
of the VPR cluster in Fig. 6(e) demonstrated that the rainfall
state below the altitude of 2 km was fairly stable during its
lifespan, resulting in that the green curve (starting state) at
05:00 UTC, June 23, 2016, and the red curve (ending state) at
07:30 UTC, June 23, 2016, were nearly overlapped. However,
cell 5 exhibited a complex microphysical transition above 2
km. It was quickly enhanced into a mature state (blue curve)
at 06:30 UTC, June 23, 2016, which also corresponded to the
hailstone developing phase when the small hailstones were
evolving to larger hailstones. The spatial structure in Fig. 4(f)
showed more obvious “hook” shapes than that in Fig. 4(e). The
vertical structure of reflectivity in Fig. 5(f) illustrated that its
vertical structure was abnormally enhanced and the core area
was featured by more pixels of reflectivity >50 dBZ than that
in Fig. 5(e). The echo top extended from 7 to nearly 12 km.
Afterward, the VPR gradually transformed into the red curve
with a slight reflectivity enhancement from 42.5 to 45 dBZ
below 2 km, which coincided with the hail falling process.

Cell 6 was a typical convective thunderstorm and it was
strongly developing at the initial state (green curve), which
resulted in the severe convective core below the altitude of 7
km in Fig. 5(e). Although it showed a similar spatial structure
to cell 5, it was not further enhanced but transformed into a
weaker rainstorm. The core area below 7 km in Fig. 5(f) pre-
sented much less pixels with reflectivity higher than 45 dBZ.
Such a transition made the VPR shapes in Fig. 6(f) character-
ized by weaker reflectivity as the altitude increases, and the
rainfall rate was fairly stable, which gradually dominated the
precipitation phase.

Although the spatial structure of cell 7 [see Fig. 4(f)] pre-
sented obvious enhancement compared with that in Fig. 4(e),
its vertical structure in Fig. 5(e) and (f) were similar to each
other, which was also similar to the vertical cross section of

cell 6 in Fig. 5(f). In addition, the VPR cluster of cell 7
in Fig. 6(g) had nearly the same shapes across its lifespan,
indicating that there was no obvious transition of the rainfall
regime, very similar to that of cell 1 in Fig. 6(a) which was a
typical tropical rainstorm, but reflectivity of cell 7 was much
stronger. As such, it was concluded that the rainfall of cell 7
was characterized by abundant raindrops similar to a tropical
rainfall system, but it was featured by much more severe
rainfall than storm cell 1.

4) Event 4: Event 4 was a continuous severe rainfall system
mainly caused by the interaction of cold air from the north and
the warm air from southwest near the north edge of Jiangsu.
Heavy rainstorms were triggered near the latitude of 34◦N
as depicted in Fig. 4(g), and the rainstorms sustained nearly
6 h. After 6.5 h, there was still a large area of rainstorm
in Fig. 4(h) near the latitude of 34◦N. During this event,
there were many rain gauge stations that recorded 6-h rainfall
exceeding 100 mm and the maximum 6-h rainfall reached
232.6 mm at Liren country at 18:00 UTC, July 9, 2017.
Both storm cells 8 and 9 were identified using the reflectivity
threshold of 35 dBZ.

Cell 8 was initially triggered at 08:00 UTC, July 9, 2017,
and it was present in both Fig. 4(g) and (h), indicating its
long lifespan. Its VPR curve at the starting stage was featured
with the reflectivity bump below 4 km [see Fig. 6(h)], which
implied that cell 8 was in an unstable convective developing
state in the initial phase. Afterward, cell 8 transformed into a
stable convective rainfall state (black and red curves) and the
reflectivity on all the layers below 5 km were nearly the same,
which can also be clearly seen in Fig. 5(g). Its vertical structure
shifted very little in Fig. 6(h) and was fairly consistent for
nearly 6 h until cells 8 and 9 merged into one huge rainstorm
at 19:00 UTC, July 9, 2017.

Cell 9 was formed and identified latter at 15:12 UTC, July 9,
2017. Its initial VPR curve in Fig. 6(i) presented a similar
shape to the initial state of cell 8 in Fig. 6(h). However,
it quickly transformed into a convective rainstorm. Although
the vertical reflectivity in Fig. 5(h) was weaker than cell 8,
the reflectivity structure of cell 9 was also characterized by a
decreasing trend as the altitude increased, which was similar
to that of cells 1, 2, and 7.

As shown previously, each identified storm cell during the
four precipitation events had its unique heterogeneous rainfall
characteristics, and the differences between some storm cells
could be dramatic. This, again, highlights the requirement of
more representative Z–R relationships that can capture the
local rainfall characteristics for improved QPE.

IV. RESULTS AND DISCUSSION

As mentioned, the gauge stations over the EJRB area are
uniformly separated into two groups: the training data set and
the test data set [see Fig. 3(b)]. The training data set is used
to derived dynamic Z–R relationships, and the testing data
are used for evaluation of the radar-derived hourly rainfall
estimates.
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Fig. 7. Scattergram of hourly rainfall estimates from radar versus gauges. (a)–(c) are respectively derived from stratiform, convective, and tropical rainfall
relations. (a) Z = 200R1.6. (b) Z = 300R1.4. (c) Z = 253R1.25.

A. Evaluation Metrics

Three evaluation metrics are computed at the validation
gauge locations for quantitative assessment, including the
normalized mean error (ENMB), root-mean-square error (Erms),
and the Pearson correlation coefficient (ECC)

ENMB =
∑n

i=1(ri − gi)∑n
i=1 gi

(3a)

Erms =
√√√√1

n

n∑
i=1

|ri − gi |2 (3b)

ECC =
∑n

i=1(gi − ḡ)(ri − r̄)√∑n
i=1(gi − ḡ)2(ri − r̄)2

(3c)

where g and r denote the hourly rainfall measurements from
gauge and corresponding radar observations, respectively; the
overbar ∗̄ stands for the sample average. ENMB reflects the
overall bias of the radar estimated rainfall. Erms is an important
indicator of the local error of radar-derived rainfall, whereas
ECC reflects the correlation between the radar estimates and
gauge measurements.

Positive (negative) ENMB scores represent the overestima-
tion (underestimation) of radar rainfall estimates. Smaller Erms

indicates smaller error of the radar estimated rainfall, and
larger ECC means radar estimates are more consistent with
corresponding rain gauge measurements.

The evaluation scores are calculated at the same temporal
resolution as the update rate (i.e., 6 min) of radar hourly QPE
product. In addition, the radar-gauge pairs are excluded in the
calculation if gi is less than 0.1 mm or the total number of
valid validation gauges is less than 10. Such a constraint aims
to further improve the confidence of the evaluation results.

B. Results

There are 1354 time frames for all the four precipitation
events detailed in Section III-C, which include 1 558 480 radar-
gauge hourly rainfall pairs. Radar estimates are derived using
various rainfall algorithms, and the performance is cross-
compared.

1) Comparison Between Individual Z–R Relations: The
radar rainfall relations Z = 300R1.4, Z = 200R1.6, and
Z = 230R1.25, respectively representing convective, stratiform,
and tropical rainfall, are applied first for the four precipitation
events. Fig. 7 shows the scatter plots of radar rainfall estimates
using these three Z–R relations versus gauge observations.
It can be seen from Fig. 7(a) and (b) that the traditional
convective and stratiform rainfall relationships have similar
scatter distributions and both are showing substantial underes-
timation. In addition, as detailed in Table IV, their Erms and
ECC scores are close and ENMB scores are negative for all the
four events. Although the tropical rainfall relation results in
some scatters above the 1:1 line in Fig. 7(c) (i.e., overesti-
mation), the majority of the scatters are distributed below the
1:1 line, indicating an overall underestimation. Scrutinizing
the evaluation results in Table IV, the underestimation of
the tropical rainfall relation is found for events 1, 3 and 4,
while it is overestimating rainfall during event 2. Nevertheless,
the tropical rainfall relation has superior performance to both
the convective and stratiform relations in terms of ENMB, Erms,
and ECC. As shown in Fig. 7(c), the radar rainfall estimates
agree fairly well with gauge observations especially in [0 mm,
5 mm].

The comparison between these three conventional Z–R
relations implies that the precipitation events are close to
tropical rainfall, although only event 1 is directly related to
typhoon. Such rainfall characteristics are tightly associated
with abundant hydrometeors at the low atmospheric layers
during the summer monsoon seasons in China. In addition,
the coexistence of overestimation and underestimation of the
tropical rainfall algorithm emphasizes the possible differences
in rain regimes, which requires adaptive Z–R relationships to
capture such differences.

2) Comparison Between Dynamic Z–R Relations: The
SGO-based approach temporally adjusts the radar rainfall
relations, although a single Z–R relation is applied for the
whole domain at a certain time. As a result, the SGO-based
rainfall estimates have better performance than those derived
from the fixed rainfall relations, in terms of ENMB, Erms, and
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TABLE IV

PERFORMANCE SCORES OF HOURLY RAINFALL ESTIMATES FROM RADAR USING THREE SINGLE Z –R RELATIONSHIPS

TABLE V

PERFORMANCE SCORES OF RADAR RAINFALL ESTIMATES USING THE SGO- AND SCIT-BASED APPROACHES

Fig. 8. Scattergram of the spatially averaged hourly rainfall estimates from radar versus gauges: (a) and (b) are respectively derived from the SGO- and
SCIT-based algorithms. The spatial average refers to the mean of radar and gauge rainfall estimates at all the validation gauge locations at a certain time
frame. The number of scatters is the same as the number of time frames.

ECC (see Table V). It is also noted that the ENMB scores
of the SGO-based algorithm in Table V are negative except
for event 2, indicating underestimation during most of the
events. However, compared to the scatter plots in Fig. 7,
the underestimation [see Fig. 8(a)] is not significant.

In order to quantify the QPE uncertainties induced by the
nonuniform distribution of precipitation, Fig. 9 illustrates the
scatter plots of hourly rainfall estimates from radar versus
gauges at all the validation gauge locations and for all the
1 558 480 pairs during these four validation events. Fig. 9(a)
shows that the hourly rainfall product derived using the SGO-
based algorithm is inclined to underestimate the rainfall, which
also accounts for the underestimation of spatially-averaged
hourly rainfall estimates in Fig. 8(a) and the negative ENMB

scores in Table V. In addition, we have checked nine radar
grid pixels in the vicinity of each gauge station. If the grid
pixel with the minimum difference between radar and gauge

is selected for comparison, the evaluation scores will be further
improved [see Fig. 9(b)]. Nevertheless, noticeable differences
between radar estimates and gauge observations still exist,
likely due to the nonuniform distribution of rainfall as shown
in the detailed microphysical analysis in Section III.

As mentioned previously, the SCIT-based dynamic rain-
fall approach partitions the radar reflectivity and gauge sta-
tions into many smaller groups to obtain more geophysically
characterized Z–R relationships for different storm regions.
It automatically differentiates the rainfall regimes through
the parameterization of Z–R relations. Fig. 8(b) shows the
scattergram of the spatially averaged hourly rainfall derived
from the SCIT-based approach at each time frame. Obviously,
the scatters are more concentrated compared to Fig. 8(a).
Fig. 10 illustrates the detailed comparison of the evaluation
scores of the SCIT- and SGO-based rainfall algorithms for
all the time frames during these four precipitation events.
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Fig. 9. Scattergram of hourly rainfall estimates from radars versus gauges at all validation gauge stations. (a) is derived from the SGO-based algorithm; (b)
is the same with (a), but a nearby radar grid pixel closer to the gauge measurement is selected for comparison; (c) and (d) are the same with (a) and (b), but
for the SCIT-based algorithm.

It is concluded that the SCIT-derived radar rainfall esti-
mates outperform the SGO-based estimates during most of
the time frames. Although substantial improvement has been
achieved, the SCIT-based radar rainfall estimates still show
some underestimation [see Fig. 8(b)], which is similar to the
underestimation of the SGO-based results indicated in Fig. 8(a)
when the spatially averaged hourly rainfall intensity is high.

In addition, the SCIT-based results in Fig. 9(c) show
improved performance than Fig. 9(a), with more scatters
distributed along the 1:1 line. We also want to note that if the
grid pixel (from nine surrounding pixels) with the minimum
difference between radar and gauge is selected for evaluating
the SCIT-based algorithm, the best performance scores can be
achieved [see Fig. 9(d)]. This indicates that some validation
gauges may be close to the edge of the identified storm cells
which could possibly result from the wind effect.

In summary, the performance of radar hourly rainfall esti-
mates in Fig. 9(c) and (d) is incrementally improved, and
Fig. 9(c) and (d), respectively show better performance than
Fig. 9(a) and (b). The superior performance of the SCIT-based
approach to the SGO-based algorithm can be attributed to the
effective reflectivity partitioning, i.e., the more representative

Z–R relationships are adopted, the more reasonable rain-
fall field can be derived. In order to further demonstrate
partitioning impact, the Z–R relation for each of the nine
identified cells in Section III is fit and illustrated in Fig. 11.
It should be noted that the rainfall rates used for fitting
are derived from gauges within the coverage of each storm
cell. The specific (A, b) parameters are listed in Table III,
which quantitatively shows the parameterization differences of
different rainfall regimes. These optimal Z–R relationships are
directly associated with the storm-scale VPR clusters in Fig. 6
and represent the rainfall features better than any single Z–R
relation.

C. Discussion

Although the SCIT-based dynamic radar rainfall algorithm
can substantially improve the radar QPE performance, extra
attention should be paid to a number of issues when using a
single-polarization radar. All these issues may affect the fitting
of Z–R relations with current radar and gauge measurements.

1) The Attenuation Issue: Although the radar systems used
in this article are S-band, which is less affected by
attenuation especially during light to moderate rain

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 13,2021 at 13:30:54 UTC from IEEE Xplore.  Restrictions apply. 



6388 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 9, SEPTEMBER 2020

Fig. 10. Comparison of the evaluation scores of the SCIT- and SGO-based rainfall algorithms. (a) ENMB(%). (b) ERMS(mm). (c) ECC.

Fig. 11. Gauge-derived rainfall rates versus radar reflectivity within the coverage of nine rainstorms listed in Table III. (a) Cell-1. (b) Cell-2. (c) Cell-3.
(d) Cell-4. (e) Cell-5. (f) Cell-6. (g) Cell-7. (h) Cell-8. (i) Cell-9. (a)–(i) are respectively related to Cells 1–9 and the black curves represent the fit power-law
relations.

scenarios. For example, Fig. 11(b) and (d) shows the
respective scatter plots for the tropical rainstorm core
(cell 2) and a stratiform rain region (cell 4). Both Z–R
fitting curves exhibit exponential characteristics, which
is consistent with typical Z–R model. However, the scat-
tergrams in Fig. 11(e)–(g), which are respectively for
the storm cells 5–7, show substantial fluctuations in the

high reflectivity range [40 dBZ, 60 dBZ]. These storm
cells essentially represent the severe rainfall regions
and ideally more scatters should be along the expo-
nential fitting curves in Fig. 11(e)–(g). But the radar
measured reflectivity values in [40 dBZ, 60 dBZ] are
lower than expected. Such fluctuations are likely due
to the attenuation caused by heavy rain. Unfortunately,
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it is challenging to get rid of the attenuation effect for
single-polarization radar applications. Polarimetric radar
techniques are suggested to address this issue [20]–[23].

2) Mismatch Between Radar Reflectivity and Surface Rain-
fall: The radar observes hydrometeors in the atmosphere
while rain gauges measure rainfall near the surface.
As shown in Fig. 6, the VPR structures of storm cells
1–3, 7, and 9 are more inclined to tropical rain and show
a monotonic decreasing trend as the altitude increases.
As such, larger reflectivity would be expected near the
surface than the measured reflectivity in the MHMR
field. In addition, storm cell 2 is very different from
the classical stratiform rain during the spring and fall
seasons over the EJHB area. Different and possibly more
sophisticated VPR correction methods (see [24]–[27])
should be implemented for these types of rainfall.

3) The Uncertainty of Gauge Observations: The tipping-
bucket gauges are often affected by the surface wind
and other environmental factors [19], [28]. The falling
raindrops may splash out of the bucket, causing under-
estimation of rainfall in the bucket. In addition, during
severe rainfall events, the tipping-bucket may not react
as quickly to the sharp rainfall within 1 min, causing
undercount of rainfall tips. These observational errors
are hard to detect and correct, which can degrade the
Z–R relationships in the fitting process. Nevertheless,
the tipping-bucket gauge is still the mainstream facility
deployed at the national weather monitoring stations in
China. With more and more disdrometers are deployed
for operational applications, the high-quality informa-
tion about the local raindrop distribution should be
incorporated in the future to derive more robust Z–R
relationships.

The first two issues may lead to an underestimation of
reflectivity in the MRHR field compared to the intrinsic
reflectivity which should be measured near the surface. This
is also why the scatter distribution in Fig. 11 is sparse near
the reflectivity range of [40 dBZ, 60 dBZ], when the rainfall
rates are higher than 75 mm/h. The third issue emphasizes
the importance of the high-quality ground truth since it is the
basis of the dynamic radar rainfall approach.

V. CONCLUSION

In this article, two dynamic radar rainfall estimation algo-
rithms are described and demonstrated using radar and gauge
measurements over the EJRB area in China. One is based
on the single globally optimal (SGO) Z–R relation, and the
other is based on a SCIT algorithm. The storm cell scale
VPR clusters derived based on the multiradar 3-D reflectivity
mosaic grids are investigated to resolve the precipitation
characteristics of four typical weather events. The primary
conclusions of the storm-scale rainfall microphysical analysis
and the QPE evaluation are summarized as follows.

1) The storm-scale VPR clusters of the identified storm
cells reveal that multiple rainfall regimes coexist during
these four precipitation events, which are characterized
by different geophysical properties.

2) The fixed Z–R relationships statistically fit during the
life-cycle of each rainstorm, along with the storm-scale
VPR clusters, demonstrate the differences in the para-
meterization of different rainstorms. Both the SGO- and
SCIT-based algorithms show better performance than the
fixed Z–R relations, which highlights the need for more
adaptive Z–R relationships.

3) The rainfall regimes over the EJRB area are more
inclined to tropical rainfall. Although the SGO- and
SCIT-based rainfall estimators both adapt the Z–R rela-
tionships in a dynamic manner, the latter performs much
better at most of the time frames. Such superior perfor-
mance is attributed to the better representative capability
of the SCIT-based rainfall approach in different regimes
since the Z–R relations are updated frequently in both
spatial and temporal domains.

Although it is suggested to apply these dynamic rain-
fall approaches in regions with ample gauge observations,
the approaches should also work in regions with sparse
gauge coverage as long as at least one gauge station is
available in each identified storm cell. Future work will focus
on quantifying the algorithm performance in such regions.
In addition, polarimetric observables should be incorporated
for dual-polarization radar rainfall applications.
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